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[1] This study examines the fidelity of the global water
cycle in the climate model simulations assessed in the IPCC
Fourth Assessment Report. The results demonstrate good
model agreement in quantities that have had a robust global
observational basis and that are physically unambiguous.
The worst agreement occurs for quantities that have both
poor observational constraints and whose model
representations can be physically ambiguous. In addition,
components involving water vapor (frozen water) typically
exhibit the best (worst) agreement, and fluxes typically
exhibit better agreement than reservoirs. These results
are discussed in relation to the importance of obtaining
accurate model representation of the water cycle and its
role in climate change. Recommendations are also given
for facilitating the needed model improvements.
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1. Introduction

[2] Two recent studies have provided estimates of the
global water cycle (GWC) based on up to date observational
resources [Oki and Kanae, 2006; Trenberth et al., 2007].
These studies join only a few that have even attempted to
characterize and quantify the GWC in a comprehensive
manner [e.g., Chahine, 1992; Oki, 1999]. Their estimates
include leading quantities that typically have a relatively
sound observational basis, such as the ocean water mass,
atmospheric water vapor, precipitation and runoff. In addi-
tion, there are attempts by the authors to also ascertain more
obscure quantities that are often relatively small and/or have
a more tenuous observational foundation, such as ground-
water, river and lake storage, biological storage, snowfall,
and subsurface runoff. The convergence in values among
these studies of some of the leading quantities [cf. Schlosser
and Houser, 2007] suggests that the global characterization
of the water cycle is nearing a robust enough stage to assess
climate models. In particular, it is important to quantify how
well the global atmosphere-ocean coupled climate models
(AOGCMs) assessed in the Fourth Assessment Report
(AR4) [Intergovernmental Panel on Climate Change,
2007] by the Intergovernmental Panel on Climate Change
(IPCC) represent the GWC since the most important climate
feedbacks under a scenario of increasing greenhouse gases

(GHGs) are inherently related to the water cycle. This
includes the water vapor, cloud, sea-ice and snow-albedo
feedbacks. Apart from this, there are stark changes projected
for a number of socially-relevant and environmentally-
important components of water cycle, particularly on a
regional scale, including soil moisture, rainfall, snowpack,
and sea-ice [e.g., Trenberth et al., 2003]. Both these con-
siderations warrant close examination of the fidelity of such
models to represent the totality of the GWC.
[3] There have been numerous studies examining the

representation and climate projections of various compo-
nents of the GWC in AOGCMs. This includes studies of
precipitation, evaporation minus precipitation, atmospheric
water vapor and its transport, sea-ice, and soil moisture
[e.g., Milly et al., 2002; Hirabayashi et al., 2005; Lambert
et al., 2005]. However, there have been few studies that
have examined this in a comprehensive manner in terms of a
wide range of water cycle components, including those in
the atmosphere, over land, and the cryosphere. In this study,
we examine the fidelity of AOGCMs assessed in the AR4 in
representing the GWC. This is performed mainly in terms of
analysis of model-to-model agreement and in a few cases
against observations where they are available and robust.
The model-to-model agreement is examined with respect to
the models’ representations of the 20th century climate as
well as their agreement under an increasing GHG scenario.

2. Models and observations

[4] The model output is based on the WCRP CMIP3
multi-model archive at PCMDI from simulations of
20th century conditions and those from an increasing
GHG scenario (i.e. rising to �2.5 times pre-industrial
CO2), referred to as SRES A1B [Meehl et al., 2007]. The
period used for the former is 1970–1994, while that for the
latter is 2070–2094. While the AR4 database does not
include a number of components of the GWC (e.g., ground-
water, biological water, lake and river storage), this analysis
includes nearly all available variables that are directly
associated with the GWC. In all cases, the data have been
globally and time averaged. Note that runoff contributions
are only those from land. For those models that provide
more than one ensemble member for the given century/
scenario, only the first is utilized.

3. Results

3.1. Comparison to Observations

[5] Figure 1 shows the model-to-model and model-to-
data agreements for a few fundamental quantities associated
with the GWC. For all but snow mass, the observed value is
shown in the far right portion of the plot. Evident is the
relatively good agreement for precipitation and precipitable
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water. While it is understood that there exist large discrep-
ancies in these quantities between models on a regional
scale [e.g., Waliser et al., 2003], the representation of their
globally-averaged values is quite good. This stems from the
long-standing observational constraints that have been
available for these quantities as well as indirect constraints
from well-measured energy cycle quantities (e.g., top of the
atmosphere energy balance). Another aspect that leads to
their good agreement, in contrast to some quantities dis-
cussed below, is that there is no ambiguity in terms of the
physical nature of the quantity being represented.
[6] Exhibiting poorer model agreements are runoff and

(over ocean) cloud water content. For these quantities, not
only is the physical process arguably more complex to
model correctly but the observational foundation is more
challenging. For example, runoff is largely based only on
measurements from river gauges – which have limitations

[Dai and Trenberth, 2002; Alsdorf and Lettenmaier, 2003] –
and in some cases through indirect residual calculations that
rely on quantities that have considerable uncertainty (e.g.,
evapotranspiration, water vapor transport). In the case of
cloud water, the observations to date have simply been too
indirect (i.e. remotely sensed), experimental or too sparse
(i.e. in-situ) to provide a robust AOGCM constraint [e.g.,
Horváth and Davies, 2007]. Thus, the greater model dis-
agreement in cloud water, over for example precipitable
water, is not only due to the challenge of the modeling
clouds [Jakob, 2003; Randall et al., 2003] but also because
the observational constraints have lacked robustness and/or
been insufficiently defined which leaves models significant
leeway in their representation.
[7] Finally, Figure 1 shows that the AOGCMs contribut-

ing to the AR4 exhibit very poor agreement in soil moisture
and snow mass. This level of disagreement stems not only

Figure 1. Globally-averaged, annual mean values of hydrological quantities from the 1970–1994 period of the 20th
century AOGCM simulations assessed in the IPCC AR4. Observed values are given for all but snow mass (lower right).
The observed values for runoff and soil moisture are from Trenberth et al. [2007]; precipitation from GPCP (left thin bar)
[Huffman et al., 1997] and CMAP (right thin bar) [Xie and Arkin, 1997]; precipitable water from NCEP/NCAR (left thin
bar) [Kalnay et al., 1996], NVAP (middle thin bar) [Randel et al., 1996], and ERA40 (right thin bar) [Trenberth and Smith,
2005]; and cloud water over the ocean from SSM/I satellite-based estimates [Weng et al., 1997]. Zero values indicate that
the given model did not provide this variable to the CMIP3 database.
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from the complex nature of the process being modeled and
the lack of robust direct measurements on a global scale, as
discussed above with runoff and cloud water, but also due to
the fact that the models are inherently representing these
quantities differently. For example, not all models attempt to
model the total soil moisture but rather only that in the
uppermost meter or so, and in some cases this is done quite
differently [Koster and Milly, 1997; Dirmeyer et al., 2006;
R. Koster et al., A common misinterpretation of model-
generated soil moisture, unpublished report, GEWEX/
GLASS Panel, 2007]. A similar ambiguity holds for snow
mass, including the accounting for glaciers [Frei and Gong,
2005; Roesch, 2006]. While it is arguable then whether it is
appropriate to compare them given the different approaches
made by the different modeling groups, there is still good
reason to be concerned with these levels of disagreement.
Soil moisture, and snow mass in particular, represent very
important water reservoirs, both physically to the climate
system as well as to society. These reservoirs play a key role
in the manifestations of their associated climate feedbacks.
For example, how much could the level of disagreement
in globally-averaged warming projections be reduced
if AOGCMs were more consistent in modeling at least
the physical structure (e.g., depths or masses) of the
water cycle? In addition, these AOGCM-based simulations
are used to project the impacts of global change on
future water availability. In this regard, it is crucial that
the models provide a physically meaningful and consistent
representation.

3.2. Uncertainty in Water Cycle Simulations

[8] Figure 2 shows a measure of agreement among the
models for all the water cycle components considered in this
study. Each bar on the plot represents a measure of the
model agreement in the globally-averaged, long-term (i.e.
25 years) mean value for the given variable. From the
distribution of modeled values, M, the mean model value
is computed, and is denoted here as M. Then the deviation,
in terms of percent, of each model’s value is computed as
M0 = 100%*(M–M)/M. The box plots in Figure 2 show the
maximum and minimum M0 values (as the ends of the
"error" bars) and the standard deviation of the M0 values (as
the box that extends about zero). The variables are plotted
from left to right according to the size of these standard
deviations. Looking at Figure 2 (bottom), it can be seen
more clearly that the model agreement for globally-
averaged precipitation, evaporation, and precipitable water
is about 10%. On the other hand, for variables at the other
extreme such as snow mass and snow depth, the level of
agreement is on the order of 200%.
[9] The additional notation on Figure 2 indicates whether

the given quantity is a flux (red) or a reservoir (blue) and
what state(s) of water are involved. For example, precipita-
ble water is a reservoir, the label is blue, and the molecule
icon indicates the vapor state. Snowmelt is a flux, the label
is red, and the icons indicate transformations between the
frozen and liquid states, shown as a snowflake and water
droplet, respectively. From this information, the following
conclusions can be drawn. First, models demonstrate better
agreement at representing the fluxes than the reservoirs. To
a great degree the agreement in the former, particularly
evaporation, precipitation and to some extent runoff, is due

to having relatively good observational constraints of the
given quantity but also from additional physical constraints
and observations associated with the connections between
the energy (e.g., top-of-the-atmosphere fluxes) and water
cycles. The relatively poorer agreement in the reservoir
terms, for all but precipitable water, is due to the much
poorer observational foundation for these quantities and the
issue raised above regarding the differences in the manner/
amount of these reservoirs being represented in the models.
Second, models demonstrate considerably better levels of
agreement with the vapor and liquid components of the
water cycle than the frozen ones. Keep in mind the situation
is a bit exaggerated here because there are three measures of
snow (depth, mass and cover) and two measures of sea ice
(fraction, thickness). However, even if only one of the sea
ice and snow measures were used, the conclusion would
remain the same.

3.3. Uncertainty in Projected Changes to the Water
Cycle

[10] Figure 3 illustrates the level of agreement in the
model-projected changes between the decades 1970–1989
to 2070–2089. In Figure 3 (top), each model’s change is
normalized by its own 20th century globally-averaged
annual mean value, referred to here as M20. Similar to
Figure 2, the box plots in Figure 3 (top) represent the
statistics (i.e. maximum, minimum and standard deviation)
associated with the distribution of model changes calculated
from: 100% * (M21–M20)/M20. In this case, the order from
left to right is the same as that for Figure 2. To some degree,
the uncertainty associated with the model projected changes
mimics that from the model uncertainty associated with the
20th century simulations. Meaning, the more uncertain a
given variable is across models – as shown in Figure 2, the
more uncertain are its changes. However, this is not strictly
the case; uncertainty in changes in snowcover, soil moisture
and cloud ice are small relative to the uncertainty level in
simulating their present-day global averages. Changes in
global mean evaporation and precipitation exhibit relatively
good agreement, while those for example for snow and sea
ice exhibit rather poor agreement.
[11] Blue labels on the plot in Figure 3 indicate changes

in quantities that suggest an enhancement to the atmospheric
component of the hydrological cycle. This includes rather
robust model agreement in terms of positive changes to
precipitation, evaporation, precipitable water and runoff.
Red labels on the plot (subjectively) indicate important
climate feedback quantities that display considerable uncer-
tainty, either in terms of lacking a consistent sign in the
projected change or by simply having a relatively large
uncertainty (>20–30%). The latter include sea ice quantities
and frozen soil moisture, while the former includes cloud
variables, soil moisture and snow quantities. For example,
the range of reduction to sea-ice thickness is between�30 to
�75%, and for snow depth +20 to �30%. While the
uncertainty in cloud ice and water shown here isn’t a direct
measure of the radiative component of cloud feedback, it
does illustrate the uncertainty in terms of the impact on the
GWC, that at this point is still uncertain in sign.
[12] Figure 3 (bottom) shows similar information as

Figure 3 (top) but in this case each model’s changes are
normalized by its globally-averaged annual mean surface air
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temperature change between the 20th and 21st centuries
(DT). Thus in this case, the distribution of modeled changes
is calculated from: 100% * (M21– M20)/(M20 * DT). In
addition, the variables are displayed from left to right in
terms of the standard deviation of this distribution – rather
than that used in the upper panel (i.e. the order calculated
and used in Figure 2). Thus, the variables whose relative
change from the 20th to the 21st century exhibit good (poor)
model agreement are on the left (right). Finally, the same
icons used in Figure 2 are added to the labels to indicate
which phases of water are involved. From Figure 3, it is still
fairly evident that agreement in modeled projected changes
of the frozen components of the water cycle is poorer than
for the modeled projected changes of the vapor and liquid
components. In addition, there is still a tendency for better
model agreement in fluxes than reservoirs, although it is not

as dramatic as for the model agreement of 20th century
climate.

4. Summary

[13] Thisstudyexaminesthefidelityoftheglobalwatercycle
in the climate model simulations assessed in the IPCC Fourth
AssessmentReport.The resultsdemonstrate rathergoodagree-
ment in 20th century climate representations of quantities that
have a relatively robust global observational basis and that are
physically unambiguous (e.g., rainfall, precipitable water).
Poorer agreement occurs for quantities that have a weak or still
uncertain global observational basis (e.g., snow fall, cloud
liquid) or that can be physically ambiguous with respect to
model representation (e.g., soil moisture, snow mass). The
worst agreement tends to occur for quantities that have both
poor observational constraints and whose model representa-

Figure 2. (top) Model-to-model agreement in globally-averaged, annual mean values of hydrological quantities from
1970–1994 of the 20th century AOGCM simulations assessed in the IPCC AR4. Quantities are ordered in increasing
model disagreement using the standard deviation (see text for details). (bottom) Same as for Figure 2 (top), except
for expanded y-scale. Horizontal labels consist of the variable name and the number of model contributions included.
Font color indicates whether the water cycle component is a flux (red) or reservoir (blue). In addition, model variables
are labeled with icons indicating whether the variable is associated with vapor (molecule), liquid (drop), and/or ice
(snowflake).
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Figure 3. (top) Similar to Figure 2, except for the change in the values associated with an increasing GHG scenario
(20th versus the 21st century). Quantities are ordered from left to right according to Figure 2 (see text for details). (bottom)
Same as for Figure 3 (top), except that each modeled change is normalized by the associated globally-averaged, mean
annual surface air temperature increase and the order from left to right is based on the standard deviation of the model
projected changes for each variable. Annotations and icons are same as in Figure 2.
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tions can be physically ambiguous (e.g., soil moisture, snow
depth/mass). In addition, components involving water vapor
(frozenwater) typicallyexhibit thebest(worst)model-to-model
agreement, and fluxes typically exhibit better model-to-model
agreement than reservoirs.
[14] For the most part, the above findings and trends also

hold true for the model-projected changes in the GWC,
although there are a few exceptions. While the model
agreement in soil moisture and near-surface soil moisture
was relatively poor when considering the 20th century
representation, the agreement in their projected changes is
quite good. This echoes the fact that AOGCMs represent
some quantities in physically different ways. Thus,
comparing such quantities from different models directly
can lead to a large disagreement but when comparing their
relative changes under a climate change scenario can lead to
better agreement since each model’s absolute value is
compared only to itself. A similar behavior is exhibited
by cloud ice, except that while the agreement in total cloud
ice change is good (a few % per degree of warming), the
modeled changes do not agree on the sign of the change.
The opposite behavior is exhibited by runoff, snowmelt and
frozen soil moisture, whereby the relative model agreement
(in terms of variable ranking – Figure 2 vs. Figure 3) was
considerably worse for the climate change than for the 20th
century. This would seem to indicate that these processes
are particularly sensitive to the modeled climate system and
influencing feedbacks. The findings also indicate that the
global atmospheric hydrological cycle will become
enhanced in the 21st century via greater precipitation
(5%), evaporation (5%), runoff (10%) and precipitablewater
(20%). Finally, the results illustrate that climate projections
contain considerable uncertainty due to poor/inconsistent
AOGCM representations of key climate feedbacks –
including sea ice, cloud ice and water, snow depth and mass.
[15] Rectifying the above uncertainties will require more

effort to model the key water cycle components, particularly
reservoirs, in physically consistent ways so that they can be
better compared amongst themselves and to available
observations. Moreover, new measurement strategies and
platforms are needed to provide constraints on a number of
poorly constrained water cycle properties (e.g., soil mois-
ture, cloud ice, sea-ice thickness, snow fall, snow mass/
depth, cloud liquid). A subset of these was given high
priority in the recent National Research Council Decadal
study [National Research Council, 2007]. Finally, to
provide a more comprehensive study of these issues, more
complete representations and/or output of the GWC are
needed for the next IPCC study (e.g., evapotranspiration,
water vapor transport, sea-ice mass).
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